Organisational provenance capacity implementation plan
At Geoscience Australia

Peter Fitch, Nicholas J Car & Sue Fyfe
What I want to talk about

• Why Geoscience Australia is interested in provenance?

• How this work came about and what the key questions were?

• A look at the implementation plan developed

• Next steps
Lessons of Climate Gate

Theft of e-mails from UEA Nov 2009
E-mails indicated manipulation of data, and suppression of raw data

Investigations found
• methods dis-organised
• bunker mentality
• lack of transparency

Researchers promised to
• improve scientific data management
• open access to data
• Improve transparency
Provenance in QA/QC

Quality Assurance (QA)
- Principles
- Policies
- Procedures
- “What to do and why”

Data Product
- Data product specification

Quality Control (QC)
- Provenance
- “What Was done”
Objective of the project

Answer 2 questions:

- To confirm that a consistent approach to the capture and use of provenance information across GA is possible and sensible and,
- If so, provide GA with a recommended work-plan with sufficient detail suitable for progressive implementation.

This required:

- Developing an understanding of the range of workflows undertaken across the business;
- Confirm (or not) that a standard approach to dealing with the capture and use of provenance information across the range of workflow can be achieved, by analysis of the workflows;
- Identify the social/institutional barriers to implementation, if any, with recommended actions to overcome them;
- Developing a technical architectural solution.
Understanding the workflows
Mapping workflows to Prov-O
Can GA workflows be mapped to Prov-O?

<table>
<thead>
<tr>
<th>Workflow Name</th>
<th>Description</th>
<th>Categorisation (C, HC, H)</th>
<th>Mapped PROV-O?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landsat satellite data processing pipeline</td>
<td>This is the automated processing pipeline for the Landsat data stream</td>
<td>C</td>
<td>Yes</td>
</tr>
<tr>
<td>EMA exposure report</td>
<td>A human-computer workflow which is run daily to provide assessments of financial and social exposure to natural hazards including fire and flood.</td>
<td>HC</td>
<td>Yes</td>
</tr>
<tr>
<td>Sentinel hotspots data</td>
<td>This is a fully automated workflow that generates hotspot datasets and are derived from satellite observations that detect heat on the land surface.</td>
<td>C</td>
<td>Yes</td>
</tr>
<tr>
<td>Provision of expert advice</td>
<td>A fully human workflow, where a GA expert is contacted by government or industry to provide expert advice. This advice is typically presented in the form of a letter or report.</td>
<td>H</td>
<td>Yes</td>
</tr>
<tr>
<td>Laboratory workflow</td>
<td>An extremely varied mostly human workflow analysing samples for various chemical and physical properties.</td>
<td>H</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- C – Computer
- H – Human
- HC – Human Computer

Yes – Prov-O can be use for GA workflows.
The socio-technical problem
A social architecture
Abstract Architecture
System Architecture
Identity Backbone.

<table>
<thead>
<tr>
<th>Thing</th>
<th>Description</th>
<th>Identity</th>
<th>Registry</th>
<th>PROV-O mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset</td>
<td>A digital data object identified by a URL</td>
<td>URL</td>
<td>Metadata Catalog</td>
<td>prov:Entity</td>
</tr>
<tr>
<td>Software</td>
<td>A set of software codes identified by a URL</td>
<td>URL</td>
<td>Process</td>
<td>prov:Entity or prov:Activity</td>
</tr>
<tr>
<td>Script</td>
<td>A script used to embody a workflow identified by a URL</td>
<td>URL</td>
<td>Process</td>
<td>prov:Activity or prov:Entity to prov:Agent</td>
</tr>
<tr>
<td>Model codes</td>
<td>as for software</td>
<td>URL</td>
<td>Process</td>
<td>as for software</td>
</tr>
<tr>
<td>Algorithm</td>
<td>as for software</td>
<td>URL</td>
<td>Process</td>
<td>as for software</td>
</tr>
<tr>
<td>Workflow</td>
<td>a workflow which operates on data and creates data identified by a URL</td>
<td>URL</td>
<td>Process</td>
<td>prov:Activity or prov:Entity or prov:Agent</td>
</tr>
<tr>
<td>Person</td>
<td>an actor who is responsible for the execution of a workflow identified by a URL</td>
<td>URL</td>
<td>Operator</td>
<td>prov:Agent</td>
</tr>
<tr>
<td>Web service data use</td>
<td>Data taken from a GA or other organisation's web service and used as per dataset use. Identified by a URI and metadata.</td>
<td>URI + metadata</td>
<td>Potentially a Web Services Register (if a GA web service) or no register - represented only as an element in provenance traces</td>
<td>prov:Entity at a basic level with notes but better as a sub-classification proms:ServiceEntity</td>
</tr>
</tbody>
</table>
Plan Overview

Year 1 - To demonstrate - build basic infrastructure, undertake exemplars, and review progress;

Year 2 - To Implement - extend to more exemplars and harden infrastructure, extend toolkits and review progress;

Year 3 - To Institutionalise - further add exemplars and review progress.
KPI’s – How do we know we’re improving?

• Provenance Maturity Model score – PMM evaluation.

• Product provenance Audit results – Audit products for provenance

• Total number of datasets - with and without metadata;

• Total number of provenance records - in the provenance store;

• Total number of Activities registered - in the Activities register;

Data usage statistics - looking at the usage of data with metadata and provenance versus data without;

List of the projects that require provenance information as part of the contract.

Number of documented scientific processes, algorithms, software: that are accessible and available online for reuse e.g. in VLs;

Number of exemplar projects complete.
Parting Thoughts - conclusions

1. We have developed a provenance information capture and use implementation plan.

2. It tackles both the technical and social aspects of implementing a provenance system.

3. We found that Prov-O can cope with the range of workflows found so far with geoscience Australia.

4. Abstract architectural patterns provide a back bone to implementation.

5. Come back to MODSOM in 2017 to see how good the plan has been!!
Thank you – Happy for questions

CSIRO Land & Water
Peter Fitch
Senior Experimental Scientist
peter.fitch@csiro.au

Geoscience Australia
Nicholas Car
Data Architect
nicholas.car@ga.gov.au